جامعة الفرات - كلية العلوم - قسم الكيمياء سلم تصحيح امتحان مقرر تحليل عددي وبرمجة - السنة الأولى الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤ / ٢٠٢٠

السؤال الأول: (٥٠ درجة) أجب عن السؤالين التاليين:

بما أن
$$\delta_y \leq 0.005$$
، فإن $\delta_x \leq 0.05$ ، فإن $\delta_x \leq 0.05$. و يكون (i)

$$z = e^{x-2y} + Cos(x y)\Big|_{(13.4,0.05)} = e^{13.4-2\times0.05} + Cos(13.4\times0.05) \approx 597196.398$$

و يكون

$$\frac{\partial z}{\partial x} = e^{x-2y} - y \sin(x y) , \quad \frac{\partial z}{\partial y} = -2e^{x-2y} - x \sin(x y) \Rightarrow$$

۲.

$$\begin{cases} \frac{\partial z}{\partial x} \Big|_{(13.4,0.05)} = e^{13.4 - 2 \times 0.05} - 0.05 \ Sin (13.4 \times 0.05) \approx 597195.583 \\ \frac{\partial z}{\partial y} \Big|_{(13.4,0.05)} = -2e^{13.4 - 2 \times 0.05} - 13.4 \ Sin (13.4 \times 0.05) \approx -1194399.549 \end{cases}$$

ويعطى الخطأ المطلق في تقدير الدالة بر بالعلاقة

$$\delta_z \le \left| \frac{\partial z}{\partial x} \right|_{(13.4,0.05)} \times \delta_x + \left| \frac{\partial z}{\partial y} \right|_{(13.4,0.05)} \times \delta_y \approx 35831.777$$

و هو الخطأ المطلق الأعظمي المطلوب. أما الخطأ النسبي فهو

$$e_z \le \frac{\delta_z}{|z|} = \frac{35831.777}{|597196.398|} \approx 0.06$$

ونطبق $f(x) = x^3 - 3$ نضع $x^3 - 3 = 0$ ويكون $x^3 - 3 = 3$ ويكون (ii) لنضع $x^3 - 3 = 3$

طريقة نيوتن - رافسون التي يعطى فيها الحل التقريبي بالعلاقة

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{x_{n-1}^3 - 3}{3x_{n-1}^2} \quad ; \quad n \ge 1$$

arepsilon = 0.0001 حيث نضع $x_0 = 1$ والخطأ

درجة

الدرجة: ١٠٠ درجة

جامعة الفرات - كلية العلوم - قسم الكيمياء سلم تصحيح امتحان مقرر تحليل عددي وبرمجة - السنة الأولى الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤ / ٢٠٢٥

نحصل على القيم المتتالية التالية:	التالية:	المتتالية	القيم	على	فنحصل
-----------------------------------	----------	-----------	-------	-----	-------

۱۵ درجة

0	1	
1	1.66667	0.66667
2	1.47111	0.19556
3	1.44281	0.0283
4	1.44225	0.00056

وبالتالي فإن الجذر التقريبي المطلوب هو: $3\sqrt{3} \approx x_4 = 1.44225$.

السؤال الثاني: (٢٥ درجة)

							ا لدينا $h=1$ و $h=1$
٧ درجات	$S = \int_{-2}^{6} f(x) dx \approx$ $= \frac{1}{2} \left[y_0 + 2y \right]$	$\approx \frac{h}{2} \left[\frac{h}{2} + 2 \right]$	$y_0 + 2$ $y_2 + y$	$2\sum_{i=1}^{n-1} y_i + y_n $ $4 = \frac{1}{2} [0 + 2]$	$= \frac{1}{2} \left[y_0 + 2 \sum_{i=1}^{2} x_i + 2 \times 2 + 9 \right]$	$\begin{bmatrix} y_i + y_4 \end{bmatrix} = \frac{15}{2}$	
				4	ع المعطى، كما يلي	وق التقدمية للتاب	(ii) نشكل جدول الفر
		х	У	Δy	$\Delta^2 y$	$\Delta^3 y$	
		-1	0				
٨				1			
درجات		0	1		0		
				1		6	
		1	2		6		
				7			
		2	9				

جامعة الفرات - كلية العلوم - قسم الكيمياء سلم تصحيح امتحان مقرر تحليل عددي وبرمجة - السنة الأولى الدورة الفصلية الثانية من العام الدراسي ٢٠٢٤ / ٢٠٢٥

٦	فتكون كثيرة حدود استيفاء نيوتن – غريغوري بالشكل
درجات	$p(x) = y_0 + \frac{\Delta y_0}{1! h} (x - x_0) + \frac{\Delta^2 y_0}{2! h^2} (x - x_0) (x - x_1) + \frac{\Delta^3 y_0}{3! h^3} (x - x_0) (x - x_1) (x - x_2)$
	= 0 + 1(x + 1) - 0(x + 1)(x - 0) + 1(x + 1)(x - 0)(x - 1)
	$=x^3+1$
٤	
درجات	(iii) باستخدام كثيرة حدود الاستيفاء والمكاملة على مجال التكامل نجد:
	$S = \int_{1}^{2} (x^{3} + 1) dx = \left[\frac{1}{4} x^{4} + x \right]_{1}^{x=2} = \left[4 + 2 \right] - \left[\frac{1}{4} - 1 \right] = 6 - \left[-\frac{3}{4} \right] = \frac{27}{4}$

السؤال الثالث: (٢٥ درجة)

بملاحظة أن $|f'(x)| = 2e^{2x}$ بن هذه الدالة متز ايدة على مجال التكامل، نستنتج أن $|f'(x)| = 2e^{2x}$ بملاحظة أن $|f'(x)| = |f'(-1)| = \frac{2}{e^2}$ و بالتالي نستنتج أنه حتى لا يتجاوز الخطأ المطلق المقدار $|f'(x)| = |f'(-1)| = \frac{2}{e^2}$ و بالتالي نستنتج أنه حتى لا يتجاوز الخطأ المطلق المقدار $|f'(x)| = \frac{2}{e^2}$ درجة $|f'(x)| = \frac{2}{e^2}$ $|f'(x)| = \frac{2}{e^2}$ المنافي المقدار $|f'(x)| = \frac{2}{e^2}$ المنافي المقدار العدد الصحيح الأصغر الذي يحقق المتراجحة و هو $|f'(x)| = \frac{2}{e^2}$

عميد الكلية د. نورس الهلامي

جامعة الفرات - كلية العلوم - قسم الكيمياء سلم تصحيح امتحان مقرر تحليل عددي وبرمجة - السنة الأولى الدورة الفصلية التانية من العام الدراسي ٢٠٢٤ / ٢٠٢٥

	$x_{0} = -2$	$x_1 = x_0 + h =$	نعين نقاط الارتكاز لحساب قيمة التكامل و هي $+h=-rac{4}{3}$, $x_3=x_2+h=-1$ و و نشكل جدول بقيم دالة التكامل في نقاط الارتكاز			
درجات	$y = e^{2x}$	$x_0 = -2$ $y_0 = 0.018$	$x_1 = -5/3$ $y_1 = 0.036$	$x_2 = -4/3$ $y_2 = 0.069$	$x_3 = -1$ $y_3 = 0.135$	
ہ درجات	$S \approx h \sum_{i=0}^{3-1} y_i = h$	$h \sum_{i=0}^{2} y_i = h \left[y_0 \right]$	$+y_1+y_2$	كامل المطلوب هي	ر القيمة التقريبية للتك ع	وتصبح

 $=\frac{1}{3}[0.018+0.036+0.069]=0.041$